
Arduino PWM and
Analog Output

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/

• Arduino is an open-source physical computing platform
designed to make experimenting with electronics and
programming more fun and intuitive.

• Arduino has its own unique, simplified programming language
and a lots of premade examles and tutorials exists.

• With Arduino you can easily explore lots of small-scale sensors
and actuators like motors, temperature sensors, etc.

• The possibilities with Arduino are endeless.

http://www.arduino.cc

http://www.arduino.cc/

Ar
du

in
o

M
ic

ro
co

nt
ro

lle
r

USB

Arduino is an open-source electronics platform

Contents
• Introduction to Pulse Width

Modulation (PWM)
• Arduino analogWrite() function
• Arduino UNO has no true Analog

Outputs. What can we do?

Pulse Width
Modulation (PWM)

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/

PWM
PWM is a digital (i.e. square wave) signal that oscillates according to a given frequency and
duty cycle.
The frequency (expressed in Hz) describes how often the output pulse repeats.
The period is the time each cycle takes and is the inverse of frequency.
The duty cycle (expressed as a percentage) describes the width of the pulse within that
frequency window.

https://developer.android.com/things/sdk/pio/pwm.html

You can adjust the duty cycle
to increase or decrease the
average "on" time of the
signal. The following diagram
shows pulse trains at 0%,
25%, and 100% duty:

https://developer.android.com/things/sdk/pio/pwm.html

Pulse-Width Modulation (PWM)

Pulse-Width Modulation (PWM)
The “shocking truth” behind analogWrite():
• We know that the Arduino can read analog voltages (voltages between 0 and 5 volts)

using the analogRead() function.
• Is there a way for the Arduino to output analog voltages as well? The answer is no... and

yes. Arduino does not have a true analog voltage output. But, because Arduino is so
fast, it can fake it using something called PWM ("Pulse-Width Modulation"). The pins on
the Arduino with “~” next to them are PWM/Analog out compatible.

• The Arduino is so fast that it can blink a pin on and of almost 1000 times per second.
PWM goes one step further by varying the amount of time that the blinking pin spends
HIGH vs. the time it spends LOW. If it spends most of its time HIGH, a LED connected to
that pin will appear bright. If it spends most of its time LOW, the LED will look dim.
Because the pin is blinking much faster than your eye can detect, the Arduino creates
the illusion of a "true" analog output.

• To smooth the signal even more, we will create and use a RC circuit (Lowpass Filter)

Pulse-Width Modulation (PWM)
• The Arduino's programming language makes PWM easy to use; simply call

analogWrite(pin, dutyCycle), where dutyCycle is a value from 0 to 255, and pin is one
of the PWM pins (3, 5, 6, 9, 10, or 11).

• The analogWrite function provides a simple interface to the hardware PWM, but
doesn't provide any control over frequency. (Note that despite the function name, the
output is a digital signal, often referred to as a square wave.)

0 − 5𝑉 → 0 − 255 → 𝑦 𝑥 = 51𝑥
𝑢 = 0𝑉 → 𝑎𝑛𝑎𝑙𝑜𝑔𝑊𝑟𝑖𝑡𝑒 0
𝑢 = 5𝑉 → 𝑎𝑛𝑎𝑙𝑜𝑔𝑊𝑟𝑖𝑡𝑒 255
𝑢 = 𝑥𝑉 → 𝑎𝑛𝑎𝑙𝑜𝑔𝑊𝑟𝑖𝑡𝑒 51 ∗ 𝑥

analogWrite():
https://www.arduino.cc/en/Reference/AnalogWrite

Secrets of Arduino PWM:
https://www.arduino.cc/en/Tutorial/SecretsOfArduinoPWM

https://www.arduino.cc/en/Reference/AnalogWrite
https://www.arduino.cc/en/Tutorial/SecretsOfArduinoPWM

Using analogWrite()

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/

analogWrite

https://www.arduino.cc/en/Reference/AnalogWrite

This functions write an “analog value”
(PWM signal) to the specified pin. You
can e.g., use it to make a LED light with
different intensity.
Syntax:
analogWrite(pin, value)
where value is a value between 0 and 255

int ledPin = 9;
int value = 0;
void setup()
{

pinMode(ledPin, OUTPUT);
}

void loop()
{

value = random(256);
analogWrite(ledPin, value);
delay(1000);

}s

Note! You need to use one of the pins marked with ~

Writes an analog value (PWM wave) to a pin.
Can be used to light a LED at varying
brightness's or drive a motor at various
speeds. After a call to analogWrite(), the pin
will generate a steady rectangular wave of
the specified duty cycle until the next call to
analogWrite()

https://www.arduino.cc/en/Reference/AnalogWrite

analogWrite()
Arduino can give a signal between 0 and 5𝑉

0.5𝑉:
0.5
5 100% → 10%

2.5𝑉:
2.5
5
100% → 50%

4.5𝑉:
4.5
5 100% → 90%

0.5V (10% of 255) -> analogWrite(pin, 25)

2.5V (50% of 255) -> analogWrite(pin, 127)

4.5V (90% of 255) -> analogWrite(pin, 229)

Arduino syntax: analogWrite(pin, value)
value: the duty cycle: between 0 (always
off) and 255 (always on).
0-5V -> 0-255

True Analog Out

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/

Arduino Analog Out
• Arduino UNO has no true built-in Analog Output

Channels (only PWM)
• What if we need a real Analog Out Signal (0-5V)?
• We will use a 2 different options:
– Create a RC Lowpass Filter that converts PWM to

Voltage
– Use a DAC chip/IC (Digital to Analog Converter)

• Such a chip uses either the SPI bus or the I2C bus

Lowpass Filter using
RC Circuit

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/

Option 1: Convert PWM to Voltage

RC Lowpass Filter:

• http://www.instructables.com/id/Analog-
Output-Convert-PWM-to-Voltage/

• http://provideyourown.com/2011/analogwrit
e-convert-pwm-to-voltage/

e.g., 𝑅 = 3.9𝑘Ω

e.g., 𝐶 = 10𝜇𝐹

http://www.instructables.com/id/Analog-Output-Convert-PWM-to-Voltage/
http://provideyourown.com/2011/analogwrite-convert-pwm-to-voltage/

Electrical Components

𝑅 = 3.9𝑘Ω

Capacitor
Resistor

These electronics components are typically included in a “Starter Kit”, or they can be bought “everywhere” for a few bucks.

https://en.wikipedia.org/wiki/Capacitor

A capacitor stores and releases electrical energy in a
circuit. When the circuits voltage is higher than what is
stored in the capacitor, it allows current to flow in, giving
the capacitor a charge. When the circuits voltage is lower,
the stored charge is released. Often used to smooth
fluctuations in voltage

A resistor resists the flow of electrical energy in a
circuit, changing the voltage and current as a result
(according to Ohms law, 𝑈 = 𝑅𝐼). Resistor values are
measured in ohms (Ω). The color stripes on the sides
of the resistor indicate their values. You can also use
a Multi-meter in order to find the value of a given
resistor.

e.g., 𝐶 = 10𝜇𝐹

https://en.wikipedia.org/wiki/Capacitor

Capacitor
The Capacitor is typically included in the Arduino
Starter Kit (or similar Kits).

If you don't have such a Kit you may buy capacitors
from Elfa, Kjell & Company, etc.

Note! You can also easily measure the capacitance using a Multi-
meter. A Multi-meter that cost from 400-500+ NOK has built-in
support for measuring capacitors (same for resistors and
resistance).

e.g., 𝐶 = 10𝜇𝐹

We will use the capacitor to create a RC Lowpass Filter in order to
smooth the PWM signal from the Arduino to make a “true”
Analog Out Signal

Digital to Analog
Converters (DAC)

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/

Option 2Using a DAC chip

• DAC – Digital to Analog Converter
• Use, e.g., Microchip MCP4911, MCP4725 or

similar
• SPI Arduino Library:

https://www.arduino.cc/en/Reference/SPI
• MCP49XX Arduino Library:

https://github.com/exscape/electronics/tree/mas
ter/Arduino/Libraries

https://www.arduino.cc/en/Reference/SPI
https://github.com/exscape/electronics/tree/master/Arduino/Libraries

DAC
Arduino UNO has no Analog Output Pins, so we need a
DAC such as, e.g., Microchip MCP4911, MCP4725 or
similar

Microchip MCP4911 can be bought “everywhere” (10 NOK).

MCP4911: 10-bit single DAC, SPI Interface

MCP4725

The MCP4725 is a little more
expensive, but simpler to use

12-bit resolution
I2C Interface

SPI Bus
• Serial Peripheral Interface (SPI) is a synchronous serial data protocol used by

microcontrollers for communicating with one or more peripheral devices quickly over
short distances.

• With an SPI connection there is always one master device (usually a microcontroller)
which controls the peripheral devices.

• SPI devices communicate in full duplex mode using a master-slave architecture with a
single master.

• The interface was developed by Motorola and has become a de facto standard.
• Typical applications include sensors, Secure Digital cards, and liquid crystal displays

(LCD).

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

SCLK : Serial Clock (output from master)
MOSI : Master Output, Slave Input (output from master)
MISO : Master Input, Slave Output (output from slave)
SS (or SC) : Slave Select (active low, output from master)

https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi

Arduino SPI
• https://www.arduino.cc/en/Reference/SPI
• http://tronixstuff.com/2011/05/13/tutorial-

arduino-and-the-spi-bus/
• http://arduino.stackexchange.com/questions/163

48/how-do-you-use-spi-on-an-arduino
• https://learn.sparkfun.com/tutorials/serial-

peripheral-interface-spi

https://www.arduino.cc/en/Reference/SPI
http://tronixstuff.com/2011/05/13/tutorial-arduino-and-the-spi-bus/
http://arduino.stackexchange.com/questions/16348/how-do-you-use-spi-on-an-arduino
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi

I2C Bus

http://en.wikipedia.org/wiki/I2C

• I²C (Inter-Integrated Circuit), is a multi-master, multi-slave,
single-ended, serial computer bus

• It is typically used for attaching lower-speed peripheral ICs to
processors and microcontrollers.

• I²C is typically spelled I2C (pronounced I-two-C)
• The I²C bus was developed in 1982 by Philips Semiconductor.
• The I²C protocol requires only 2 wires for connecting all the

peripheral to a microcontroller.
https://learn.sparkfun.com/tutorials/i2c

http://en.wikipedia.org/wiki/I2C
https://learn.sparkfun.com/tutorials/i2c

DACMCP4911: 10-bit single DAC

SCK (13)
MISO (12)
MOSI (11)
SS (10)

MCP4911

1 2 3 4

8 7 6 5

𝑉EFG𝑉HH
𝑉I

J
K

𝑆𝐷
𝐼

𝑆𝐶𝐾

𝐶𝑆

𝑉O
O

𝐿𝐷
𝐴𝐶

Arduino MCP4911

Analog Out (0-5V)

MISO Not Used, since we get nothing back from DAC IC

The LDAC input can be used to select the device,
and you could use a GPIO pin to turn the device on
and off through this pin. In this example, we just tie
it to ground so it is always selected and powered.

𝑉HH = 5𝑉
𝑉OO = 0𝑉

MCP49xx Arduino Library Example
#include <SPI.h> //Include the Arduino SPI Library
#include <DAC_MCP49xx.h> //Include the MCP49xx Arduino Library

// The Arduino pin used for the slave select / chip select
#define SS_PIN 10

//Set up the DAC DAC MCP4911
DAC_MCP49xx dac(DAC_MCP49xx::MCP4911, SS_PIN);

void setup()
{
}

void loop()
{
double u; //Control Signal
// For MCP4911, use values below (but including) 1023 (10 bit)
u = 255; //Simulating the Control Value
dac.output(u);
delay(5000);

u = 512; //Simulating the Control Value
dac.output(u);
delay(5000);

}

https://github.com
/exscape/electronics/tree/m

aster/Arduino/Libraries
Example

The control signal (u) should
come from the PI/PID
controller function.
It need to be converted from 0-
5V (or 0-100%) -> 0-1023
before we send it to the DAC

Connect the circuit (Arduino + MCP4911) on a
breadboard. Use a multi-meter so see if you get
the correct output signal

https://github.com/exscape/electronics/tree/master/Arduino/Libraries

MCP49xx Arduino Library Example
#include <SPI.h> //Include the Arduino SPI Library
#include <DAC_MCP49xx.h> //Include the MCP49xx Arduino Library

// The Arduino pin used for the slave select / chip select
#define SS_PIN 10

DAC_MCP49xx dac(DAC_MCP49xx::MCP4911, SS_PIN);

void setup()
{
Serial.begin(9600);

}

void loop()
{
double u; //Control Signal
int aiPin = 0;
int aiValue;

for (int i=0; i<1023; i++)
{
u = i;
dac.output(u);

aiValue = analogRead(aiPin);
Serial.print("AIValue=");
Serial.println(aiValue);

delay(1000);
}

}

Example

Connect the circuit (Arduino + MCP4911) on a
breadboard. Use a multi-meter so see if you get the
correct output signal.

On the Multimeter you should see the output slowly
increasing from ~0V to ~5V with intervals of 1000ms.

You can also connect the output from the DAC to an
Analog Input Pin on the Arduino. Write the value to
the Serial Monitor.

Alternative Solution
MCP4725

The MCP4725 is a little more expensive
(than MCP49xx), but simpler to use.

12-bit resolution
I2C Interface

http://henrysbench.capnfatz.com/henrys-bench/arduino-output-devices/arduino-mcp4725-digital-to-analog-
converter-tutorial/

http://henrysbench.capnfatz.com/henrys-bench/arduino-output-devices/arduino-mcp4725-digital-to-analog-converter-tutorial/

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

